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O(4, 2): an exact invariance algebra for the electron 
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Department of Mathematics. University of Queensland, St Lucia, Brisbane, Queensland. 
Australia 

Received 15 October 1974 

Abstract. I t  is shown that the Lie Algebra 0 ( 4 , 2 )  is an exact invariance algebra of Dirac’s 
equation. The elements of this algebra become equivalent to the generators of conformal 
transformations in the zero-mass or high energy limit, provided the helicity of the electron 
is held at an appropriate value. A picture is suggested of the electron as ‘a massless spin 4 
particle in a space-time knot’. 

1. Introduction 

I t  is well known that while the wave equation for the neutrino is invariant under the 
conformal group of transformations, Dirac’s equation for the electron is not. Therefore 
it is suprising to find an 0(4,2)  invariance algebra for the latter. The representations of 
0(4,2)  involved are of the type usually associated with a massless particle with spin i, 
but the elements of this algebra are, of course, not the generators of conformal trans- 
formations. However, they are found to become equivalent to them in the zero-mass or 
high energy limit, provided these limits are taken in an appropriate way. 

These results enable one to view in a new light the approach to conformal invariance 
of Dirac’s equation in these limits, and they suggest a picture of the electron as ‘a massless 
spin f particle in a space-time knot’. 

2. Theory 

Consider four-component spinor functions $(x), and define Dirac matrices 
y,, p = 0, 1,2,3 such that 

where the diagonal metric tensor gpv(= g””) has goo = - g i l  = -g22 = -g33 = 1. 
The generators of the conformal group are (Mack and Salam 1969) 

P, = i2/dxp, J , ,  = XrPv  - xvp, + hi[r, 9 Y”1, 
D = xpP,+$i, 

K ,  = x,(2D + i )  - xvxvP, - iy’x,y,. 
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They satisfy the commutation relations 

as well as those of the Lorentz algebra whose elements are J U v .  In toto these commutation 
relations are characteristic of the Lie algebra 0(4,2).  

Dirac's equation, 

(f'P,--m)$ = 0, (3 1 

is invariant under the Poincare subgroup of transformations generated by P, and J,,,, 
but is not left invariant by dilatations generated by D, nor by special conformal trans- 
formations generated by K,. Only when m = 0 is invariance under all transformations 
in the conformal group secured. More precisely, the equations 

where y s  = i 7 0 ~ 1 ~ 2 7 3 ,  are conformal-invariant. Nevertheless it is possible to find, in 
the usual Hilbert space of solutions of equation (3), Hermitian operators J,,. P; .  K ;  
and D' satisfying the 0(4,2)  commutation relations. In other words 0(4 ,2)  is an 
invariance algebra for Dirac's equation. 

Taking the alternating tensor with ~ 0 1 2 3  = - 1, define 

Then the following relations hold. (Proofs of the less obvious ones are presented at the 
end of this note.) 

These commutation relations are very similar to those of 0(4,2),  the important difference 
being the appearance of the factor PP,, in the commutator of R ,  and L , .  However. on 
the space of solutions to Dirac's equation this factor reduces to m 2 .  (Note that J ,  R, and 
L, commute with PUPu and y"P,,.) This enables one to define a set of operators P;, K ;  
and D' which, taken together with the J,,, satisfy the 0(4 ,2)  commutation relations. One 
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may take P;  = m -  ' L,, K ;  = m -  ' R ,  and D' = J ,  but it is more interesting to consider the 
possibilities 

(0) P;  = L,, K ;  = m-'R,,  D' = J 

and 

(b)  P; = R,, K ;  = m-'L,,  D'= -J. (7) 
I t  can be seen from the definitions ( 5 )  that these operators are Hermitian if P, and 

J,, are Hermitian. Notice that J is a pseudoscalar and that R ,  and L,  are neither polar 
nor axial vectors, but ( R ,  - L J  is a polar vector and ( R ,  + L,) is an axial vector. The 
appearance of the pseudoscalar J (or - J) as the 'dilatation operator' D' is encouraging 
when one notes (Bracken 1973) that in the zero-mass case, for t+b satisfying equation (4), 

D$ = kJ$. (8) 
As a result of parity-violating equations like (4) and (8), there is in the zero-mass case no 
way of distinguishing scalar from pseudoscalar, nor polar from axial vector. 

What representations of 0(4,2)  are given by the operators J,,, PI, K ;  and D' in the 
usual Hilbert space of solutions of Dirac's equation? This question is easily answered. 
One notes that if V, is any four-vector operator in this space, then 

[J, V,] = -iiEpvpaJYPV", (9) 
so that with the help of equation (6) one has 

C ~ ~ ~ , , J ~ ~ L "  = L,, E ~ ~ ~ ~ J ~ ~ R ~  = - R , .  

Since [L,, L,] = [R, ,  R,]  = 0, these equations imply that LpL,  = RIR, = 0. Thus in 
the case (a) one has 

P ' P ;  = 0, 

P I P ;  = 0, 

w; = +P;, 

w; = +t.p; ,  

and in the case (6) one has 

where w; = -fq,rpaJvPPa' is the Pauli-Lubanski vector in each case. In other words 
the representation of 0(4 ,2)  is, for either choice(a)or (b), of the type usually associated with 
a massless particle with spin 3. In the case (a) this 'particle' has helicity -4, while in the 
case (b) it has helicity +f. Other relations characteristic (Barut and Bohm 1970) of 
these particular representations of 0(4 ,2)  can be shown to hold. In particular, 

KI P:+K:PI = J , ,JP ,+J , ,JP , -2 i (D' -~ i )g , ,  (10) 
in either case (a) or (b). 

There are in fact two irreducible representations of 0(4 ,2)  involved in each case. 
The operators P ; ,  K; and D', constructed from the P, and Jvp, do not mix the subspaces 
corresponding to positive and negative eigenvalues of Po, so that there is a representation 
in each subspace. It can be seen from what follows that Pb is positive-definite on positive 
energy solutions of Dirac's equation and negative-definite on negative energy solutions. 

Now consider the zero-mass and high energy limits-that is to say the behaviour of 
P ; ,  K ;  and D' on normalized functions t+h, such that 

m-'P.Pt+b -, 00, (11) 
where P = ( P ' ,  P', P 3 ) .  In the case (a) one finds that the operators P; and D' remain 
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well defined in the limit, but that KI remains well defined only if the functions II/ cor- 
respond to states of the electron with helicity -$. In other words one must impose 
the equation 

a . P *  = -IPIII/, 
where a = ( y z y 3 ,  ~ 3 ~ 1 ,  y Iyz ) ,  while the limit is considered. Equivalently one requires 
that, in addition to (1 I), 

YS* -+ *. (12) 

Subject to this constraint, the operators P ; ,  K ;  and D' tend towards operators equivalent 
to P,,  K, and D. In particular it is clear from what has been said above that 0'3 + D$. 

Similarly if the 0 ( 4 , 2 )  operators (b )  are chosen, one can consider the limit 

m - ' P .  P$ + CG, Y S *  + - * 9  (13) 

and again P,, K ;  and D' tend towards operators equivalent to P,,  K ,  and D. In particular 
it will again be true that D'I) + 01). 

In more detail, in the case (a) one has from equation (21), 

P; = -G, + P,J+$P,(1 -ys)-$i(l -y5)y ,yvP, ,  

where 

G, = x,PvPv - P,(D - i), 

so that for I) satisfying the conditions ( 1 1 )  and (12) one has 

P;$ + P,(2D - i)$ = ( 2 0  + i)P,$. 

Then from the identity (10) one has 
KbPb = p - i D ' - i  

where N = (Jol, J o z ,  Jo3) ,  so that 
Kb = (Nz-iD'-3 a)(Pb)- 

implying that 

Kbll/ + (p - iD - $)(20 - 1)- ' (Po)-  'I(/ 

= (2D- i ) - ' ( p - iD-~) (P0) - ' * ,  

However, on the limiting functions, which are wavefunctions for a massless particle with 
helicity -4, one has 

KoPo = (Nz - iD - i), 
since the conformal group generators form a similar representation of 0 ( 4 , 2 )  on such 
functions. Hence we conclude that 

Kb$ + (2D-i)-'Ko$, 

and by Lorentz covariance that 

K;$ + ( 2 0  - i)- ' K,$ = K,(2D + i)- I $ .  (15) 

Now the transformation (in the Hilbert space of wavefunctions for a massless particle 
with helicity -+), which carries P, into (2D+ i)P, and K ,  into ( 2 0 -  i)-'K,, is a unitary 
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transformation U ( D )  defined by 

U ( D )  = (20  + i)U(D + i), u ( D ) u ( D ) ~  = I .  

For then 

U(D)P,U(D)’ = P,U(D-i)U(D)+ = P,(2D-i) 

and 

U(D)K,U(D)t  = K,U(D+i)U(D)+ = K,(2D+i)-’. (17) 

I t  is evident that U D U t  = D and that UJ,,U‘ = J P v ,  so that one may conclude that the 
0(4,2)  operators P I ,  K ; ,  D’ and J , ,  become equal to UP,Ut, UK,Ut ,  UDUt and 
UJ,, Ut in the limit on negative helicity wavefunctions. (Alternatively one could 
consider instead of P;, K ; ,  D’ and J r v r  the operators U(D’)’P;U(D’), U(D’)tK;U(D’), 
D‘ and J , , ,  which also form an 0(4,2)  invariance algebra for Dirac’s equation and which 
become equal to the conformal group generators in this limit.) The treatment of the 
limit (13), with the operators as in (b), is entirely analogous. Note that in each case Pb is 
in the limit related to Po by a unitary transformation, so that the signs of Pb and Po are 
equal in the limit. Since both signs are invariant under the action of the 0(4 ,2)  algebra 
they must be equal on all solutions of Dirac’s equation. 

3. Conclusion 

These results enable one to view in a new way the approach to conformal-invariance of 
Dirac’s equation in the zero-mass or high energy limit. On the one hand we have the 
widely discussed view (see for example Kastrup 1966) that the conformal group is an 
approximate invariance group for the electron at large values of m - 2 P .  P, and that D 
and K ,  are approximately constants of the motion in that situation. Now a second 
picture appears. There is an exact 0(4,2)  invariance for the electron, but the energy- 
momentum four-vector P, is not in this Lie algebra. At  large values ofm-’P. P, provided 
the helicity of the electron is kept fixed and the 0(4,2)  algebra is chosen to match the 
helicity, this 0(4,2)  is approximately equivalent to the Lie algebra of the conformal 
group (containing P,). 

In either case, (a)  or (b), the representation of 0(4,2)  by P ; ,  K;, D’and J,, is irreducible 
(for a given sign of Pb) and occupies the same Hilbert space as the unitary representation 
of the Poincare group, generated by P, and J, ,  (with the same sign for Po). Therefore it 
must be possible not only to express P I ,  KI and D’ in terms of the P, and J , , ,  as done 
above. but also conversely to express P, in terms of the P i .  K : .  D‘ and J, , , .  Such an 
expression clearly would involve m. Suppose one now regards P;, K ; ,  D’ and J , ,  as the 
generators of ‘conformal transformations’ for a massless spin ‘particle’ (with helicity 
- in case (a), + in case (b)) moving in a peculiar space, with coordinates different from 
x,, the coordinates of Minkowski space. (The structure of the 0(4,2)  operators as given 
above indicates that the coordinates in this peculiar space transform as a four-vector 
under Lorentz transformations of Minkowski space, but transform as neither a polar nor 
an axial vector under a parity transformation of Minkowski space.) Given that there is 
an expression for the energy-momentum four-vector of the electron as a function of these 
‘conformal group’ generators, one may then think of the electron as a massless spin $ 
particle in a sort of ‘space-time knot’. The complication or  extent of this knot is 
characterized by m or by the Compton wavelength of the electron. The underlying 
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massless particle can be taken to have either helicity, -f or +;, and one has a picture of 
the knot unravelling as the valueofm-2P. Pincreases, provided the helicity oftheelectron 
is kept fixed, and the helicity of the underlying particle is chosen to have that same value. 

Appendix 

In order to prove that [ J ,  L,] = -iL,, [ J ,  R,] = iR,, it is necessary and sufficient to 
show that 

(18) [ J ,  {P,, J ) ]  = - i {P”,  J,,; 

and that 

[ J .  {P’, JV, j ]  = - ‘  lip,, J ) .  (19) 

In the former case one notes that 

fP’, t J ,  \ , I  ’ = - i [ i J v p J ‘ p ,  P,] 

and that 

[ J ,  {P,, J j l  = [ J 2 ,  PPI. 

Then equation (18) follows because, as may readily be checked, 
J 2  = - J  J F v - 3  

pv 4. 

Now note that 

{P‘, J, ,  = 2P’J,,, - 3iP, 

so that, using equation (9), 

[ J ,  {P”,  J,,,)] = 2iP,(J‘‘~u,,pJ’P) - 3~, ,puPuJ”p.  

But i t  follows from the commutation relations for the Lorentz group, 

i[J,,l Jp,l = g , , J , . “ + g , u J , , - g r . p J , a - g , u J , p .  
that 

J‘“E,,,,~J’~ = ig‘a~a,vpJ’P - Jd‘,, 

so that 

[ J .  {P’, JY,).] = -E , , , , , J”~P“-~~P,J  = - i{P, ,  J ) ,  

and equation (19) is proved. 
Next note that, from the definitions, 

L,  = P,J -$EpvpoJVPPu - J,,P” + sip, 

= P,J + - x,P‘P,, + x’PvP, + $iP”[y,., ;.,I + sip,, 
Now 

*!’-,IJ = i%, [., 
~ p ’ p b i  i I 5  IjI 1 7ul = 2i75(7,;fu - g p u ) ,  

so that 

L, = P,J + iP$- - i;.,,y’P,,(- - G, 



814 A J Bracken 

where 

5-t = itl+Y,) 

and 

G, = x,P'P, - x'P,P, -tip, = x,P"P, - DP, . 

Similarly, 

R, = P,J-iP,(+ +iy,y"P,i+ +G,. 

Then, noting that [ + ( -  = 5 - 5 ,  = 0, one has 

R,L, = P,L,(J - i) - iP,( + L, + iy,y'P,c+ L, + G,L, 

= P,P,(J2 -2iJ(+ +(-)-P,G,(J-- i - i~+)+ G,P,(J+i(-) 

- iP,y,y"P,(J - i)< - + iy,P,y"P,J[ + - iy,y"P,G,i + - iG,y,y"P,( - - G,G,, 
(23) 

and 

L,R, = P,P,(J2 +2iJ<-  + ( + ) + P , G , ( J + i + i ~ - ) -  G,P,(J-i(+)+iP,y,y"P,(J+i)i+ 

- iy,P,y"P,J( - - iy,y"P,G,( - - iG,y,y"P,~ + - G,G,. 

From this point it is a straightforward matter to evaluate [R,, L,], provided one notes 
that 

[G,, G,] = iL,,P"P, 

where 
L,, = X,P, - XJ,. 

In order to show that [L,, L,] = 0 one notes that 

L,L, = P,P,(J2 +2iJ<-  -iJ)--P,G,,(J+iC- - i)-G,P,(Jfi(-)-iP,y,y"P,JS- 

- iy,P,y"P,(J + i ) i  - - yryuPuy,y"Pu< - + iy,y"P,G,< - + iy,G,;I"P,<- + G,G,, 

and again the proof is straightforward from this point, with the help of equations (24). 
The proof that [R,, R,] = 0 is quite similar. 

The remaining relations in the set (6 )  are simply statements that J is a Lorentz 
(pseudo-) scalar and that L, and R, are four-vector operators, and as such are obviously 
correct. 

In order to prove the identity (10) it is sufficient to show that 

R,,L,, = ( J p a J Z v  + J,,J',)pbPu - 2ig,,(J - $i)PP,, (25) 

where R,,L,, denotes R,L,+ R,L,. Now from equation (23), 

R,,L,, = - G(,G,, + 2iG,,P,, + 2P,P,(J2 - i y , J  + 2) - 2ig,,(J - i)P"P, 

+ iy,,P,,.i"P,(y,J + i) - iyc,G,,y"P,. (26) 
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It is not difficult to verify that 

(27) J 2 '  -1yJ = -4L L"-3 P V  4 ,  

that 

Y ( , G , ) Y ~ P ~ - ~ ( ~ P , ) ~ ~ P ~ ( Y S J  +i)  = - (LpuY'Yv  + LvoYUY,  +2kpv)Pppp (28) 

and that 

- G,,G,, + 2iG,,P,, - 2P,Pv(~LpuLp" - 2) = (LpuLuv + LvuLu, + g,,)P"P,. 

(29) 
On combining equations (263-(29), one obtains equation (25)  as required. 
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